A multi-precision algorithm for convex quadratic optimization

07/27/2022, 1:00 PM — 1:30 PM UTC
JuMP

Abstract:

In this talk, we describe a Julia implementation of RipQP, a regularized interior-point method for convex quadratic optimization. RipQP is able to solve problems in several floating-point formats, and can also start in a lower precision as a form of warm-start. The algorithm uses sparse factorizations or Krylov methods from the Julia package Krylov.jl. We present an easy way to use RipQP to solve problems modeled with QuadraticModels.jl and LLSModels.jl.

Platinum sponsors

Julia ComputingRelational AIJulius Technology

Gold sponsors

IntelAWS

Silver sponsors

Invenia LabsBeacon BiosignalsMetalenzASMLG-ResearchConningPumas AIQuEra Computing Inc.Jeffrey Sarnoff

Media partners

Packt PublicationGather TownVercel

Community partners

Data UmbrellaWiMLDS

Fiscal Sponsor

NumFOCUS