Rasmus Kjær Høier

I am a PhD student at Chalmers University of Technology. My research interests are biologically motivated learning algorithms and energy based models.

Talks:

16:40 UTC

Bender.jl: A utility package for customizable deep learning

07/28/2022, 4:40 PM — 4:50 PM UTC
Blue

A wide range of research on feedforward neural networks requires "bending" the chain rule during backpropagation. The package Bender.jl provides neural network layers (compatible with Flux.jl), which gives users more freedom to choose every aspect of the forward mapping. This makes it easy to leverage ChainRules.jl to compose a wide range of experiments, such as training binary neural networks, Feedback Alignment and Direct Feedback Alignment in just a few lines of code.

Platinum sponsors

Julia ComputingRelational AIJulius Technology

Gold sponsors

IntelAWS

Silver sponsors

Invenia LabsBeacon BiosignalsMetalenzASMLG-ResearchConningPumas AIQuEra Computing Inc.Jeffrey Sarnoff

Media partners

Packt PublicationGather TownVercel

Community partners

Data UmbrellaWiMLDS

Fiscal Sponsor

NumFOCUS